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ABSTRACT:

The presence of mesoscopic features and damage in quasi-brittle materials causes significant

second order and nonlinear effects on the acoustic wave propagation characteristics.  In

order to quantify the influence of such micro-inhomogeneities, a new and promising tool for

non-destructive material testing has been developed and applied in the field of damage

detection.  The technique focuses on the acoustic nonlinear (i.e. amplitude dependent)

response of one of the material’s resonance modes when driven at relatively small wave

amplitudes.  The method is termed SIngle MOde Nonlinear Resonance Acoustic

Spectroscopy (SIMONRAS).  The behavior of damaged materials is manifested by

amplitude dependent resonance frequency shifts, harmonic generation and nonlinear

attenuation.  We illustrate the method by experiments on artificial slate tiles used in roofing

construction.  The sensitivity of this method to discern material damage is far greater than

that of linear acoustic methods.
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1 INTRODUCTION

The elastic behavior of brittle materials such as brick, slate, concrete, rock, sand and soil, is

manifest by strong nonlinearity, hysteresis in stress-strain relation, and discrete memory.

Primarily, it is the material’s compliance represented by the mesoscopic linkages (order 10-

6-10-9 m) between the rigid components, that give these materials their unusual elastic

properties.  Materials with nonlinear mesoscopic elasticity stand in contrast to liquids and

crystalline solids whose elasticity is due to contributions of atomic level forces, i.e.

materials with atomic elasticity.  Atomic elastic materials are well described by the

traditional theory of elasticity [1,2]; however mesoscopic elastic materials are not.  For low

strain levels, mesoscopic materials are well described by the P-M (Preisach-Mayergoyz)

model of nonlinear elasticity, as developed in the mesoscopic model by McCall & Guyer

[3,4].  A sequence of experiments on numerous intact and microcracked materials illustrates

the evidence of nonlinear mesoscopic elastic behavior and yields the significant conclusion

that damaged atomic elastic materials behave as mesoscopic elastic materials [5,6].

Qualitatively, the amount of nonlinearity is highly correlated to the damage/microcracked

state of the material [7].

Recently a couple of promising and powerful NDE tools for damage interrogation in

materials have been developed. The methods basically study the amplitude dependent

frequency response in dynamic wave experiments, and are termed Nonlinear Elastic Wave

Spectroscopy (NEWS) techniques.  One method is Nonlinear Wave Modulation

Spectroscopy (NWMS) and is described in Part I [8,9].  In short, NWMS is based on the

monitoring of nonlinear frequency mixing in the material.  The manifestations of the

nonlinear response appear as wave distortion and accompanying wave harmonics, and in

sum and difference frequency generation (sidebands).  The approach has proved to be time
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efficient and effective in discerning damage to materials.  The second method is called

Nonlinear Resonant Ultrasound Spectroscopy (NRUS): the study of the nonlinear response

of a single, or a group of, resonant modes of the material [5,10,11].  Granular and

microcracked materials always show nonlinear softening of the elastic modulus with

increasing drive levels in dynamic resonance experiments, even at strains as low as 10-8.  As

a result, the resonance frequency shifts, harmonics are generated, and amplitude dependent

damping characteristics are observed.  In undamaged materials, these phenomena are very

weak.  In damaged materials, they are remarkably large.

In this paper we focus on the NRUS technique and its application to damage

detection.  In a previous publication, we constructed a diagnostic method which is used to

quantify the acoustic nonlinearity of homogenous and isotropic samples in laboratory bench-

top resonance experiments [11].  The analysis of the experimental data is supported by a

phenomenological model based on the P-M implementation of hysteresis.  In general, six

material parameters -two linear and four nonlinear- can be extracted from the data.  These

six parameters completely define the material state of the sample (depending on confining

pressure, saturation, damage, etc.) and may be found from a simple set of nonlinear

experiments:  (1) measure the relative frequency shift as a function of measured

acceleration, (2) measure the amplitude dependence of the measured second and third

harmonic levels, and (3) measure the relaxation of the linear modulus after high excitation.

The characterization procedure is applied to damage detection in thin slate beams.

We investigate the first order bending mode which has a resonance frequency well below

500 Hz (acoustic resonance).  Linear (wavespeed and wave dissipation) and nonlinear

parameters were measured for progressive fatigue, induced by cyclic mechanical loading.

We will show that the sensitivity of nonlinear methods to the detection of damage features

(cracks, flaws, etc.) is far greater than linear acoustical methods.
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2 EXPERIMENT AND CONFIGURATION

The experimental apparatus used to obtain the results discussed in this paper is shown in

Figure 1.  A similar configuration for the study of cylindrical cores is described and used by

TenCate & Shankland [10] and by Van Den Abeele & TenCate [11].  The samples are thin,

rectangular beams of artificial slate used in roofing constructions.  The major component in

their composition is Portland cement.  Mineral additives and synthetic organic fibers are

added for strength enhancement.  The open porosity is about 26%.  The nominal dimensions

of the beams used in the present study are 200mm×20mm×4mm.

The beams are excited at their lowest-order bending resonance mode by a low

frequency, low distortion speaker.  The displacement distribution corresponding to this

resonance has two nodal positions (at 0.224*L from the edges, with L the length of the

beam) from which the samples are supported by thin nylon wires.  The strain concentration

is located in the middle of the beam. The first order resonance frequency is typically of

order 300 Hz, and the linear attenuation, measured from the resonance width and expressed

as a modal damping ratio ξ, equals 0.005 (i.e. a quality factor Q of 100, since Q=1/2ξ) [12].

The speaker is positioned at 2 cm from the middle, parallel to the beam surface. It is driven

in discrete frequency steps by a function generator through a high power amplifier. The

coupling medium between specimen and speaker is air (non-contact excitation).  A

B&K 4375 accelerometer attached to one end of the beam measures the sample’s out of

plane response.  The signal from the accelerometer is preamplified, fed into a 16 bit A/D

convertor and analyzed using LabVIEW.  A lock-in virtual instrument is used to measure

the fundamental frequency level.  The harmonic content is analyzed using LabVIEW's

"Harmonic Analyzer"-vi.  The apparatus is capable of measuring accelerations down to

10-2 m/s2, which typically corresponds to inferred strains of 10-9 for rectangular beam
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samples of 200 mm in length and 4 mm in thickness.  In order to monitor resonant peak shift

and harmonic generation, 4 to 10 resonance sweeps are made at successively increasing

drive voltages over the same frequency interval.  With Q ("inverse attenuation", 1/2ξ) being

100, a single sweep is typically 1 minute in duration, depending on the frequency stepsize.

Sweep rates, step sizes, and data storage are all PC controlled.

In a sample that is intact (atomic), the resonance curves scale linearly with the

applied voltage.  The resonance frequency and the attenuation are amplitude independent,

and there's no evidence of harmonic generation.  In a sample that is damaged (or nonlinear

mesoscopic to begin with), one observes an amplitude dependent resonance frequency shift

(a softening of the modulus, in general), harmonics are created by the nonlinearity of the

medium and the attenuation increases significantly with drive voltage.  Based on the PM

model, the relationship between the drive amplitudes and the various nonlinear phenomena

provides clues to the type of nonlinearity of the material [11,13].  The presence of such

nonlinear effects indicates microcracking and damage [7].

Figure 2 illustrates the experimental results for a slate sample before and after

damage impact.  The resonance curves for the intact sample do not clearly show signs of

softening.  However, analysis of the resonance maxima, i.e. plotting the relative resonance

frequency shift, (f0-f)/f0 (with f0 the linear resonance frequency and f the resonance frequency

at increasing drive voltage), versus the measured peak acceleration, reveals a slight linear

decrease of the resonance frequency with increasing amplitude.  The measured harmonics,

obtained at peak resonance, are all at least 60 dB below the fundamental.  The attenuation

factor ξ is barely increasing with amplitude ( (ξ-ξ0)/ξ0 is plotted, where ξ0 is the modal

damping ratio at low strain and ξ  the attenuation at increasing drive voltage).  For the

damaged sample, the softening becomes significantly more apparent.  A similar analysis of

the resonance frequency shows that the nonlinear effect is raised by two orders of magnitude
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due to the induced microdamage.  The amplitude dependence is still linear.  Also, with the

larger frequency shift, the harmonic spectrum changes dramatically.  The third harmonic

becomes dominant, and its dependence on the fundamental acceleration amplitude is

quadratic.  It is remarkable that the second harmonic does not nearly show a similar

increase.  Finally, we observe a significant increase in nonlinearity of the damping.  The

attenuation depends linearly on the measured resonance amplitude.  (For a method to invert

the attenuation in the case of a skewed reseonance peak, we refer the reader to the work of

Smith and TenCate [14] ).

3 PHENOMENOLOGICAL MODEL

The linear resonance frequency shift, the quadratic amplitude dependence of the third

harmonic, and the linear increase of the attenuation with increasing drive level are typical

observations of mesoscopic hysteretic materials.  From various static and dynamic

experiments we do know that micro-cracked materials cannot be described by classical

theory.  When cracked, intact materials become highly nonlinear, and/or exhibit hysteresis

and discrete memory in their stress-strain relation [6].  As discussed in Part I, the theoretical

description of nonlinear mesoscopic elastic materials contains terms that describe classical

nonlinearity, as well as hysteresis, and discrete memory [3,4,13,15-18].  In order to describe

the typical observations illustrated in Figure 3, it suffices to account only for hysteretic

effects (i.e, the effect of classical anharmonicity of the energy density is negligible).  In this

case, the constitutive relation between the stress σ and the strain ε can be expressed as

follows:
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σ ε ε ε= K d( , �) (1a)

with K the nonlinear hysteretic modulus (neglecting the classical perturabtaion terms) given

by

K K t sign( , �) ( ( ( ) ( �) ) ...)ε ε α ε ε ε= − + +0 1 ∆  . (1b)

Here, K0 is the linear modulus, ∆ε  the local strain amplitude over the previous period

(
2

MinMax εεε −
=∆  for a simple continuous sine excitation), � /ε ε= d dt  the strain rate,

sign( �)ε = 1 if �ε > 0  and sign( �)ε = −1 if �ε < 0  [13,18].  The parameter α is a measure of the

material hysteresis. A hysteretic nonlinear stress-strain relation as described in first order

approximation by Equation 1, is capable of explaining the above described dependencies.

Indeed, substituting (1a) into the wave equation and calculating the nonlinear contribution to

the solution, we find 1) a linear decrease of the resonance frequency for increasing strain

levels:

f f
f

C0

0
1

−
= ∆ε (2)

2) a quadratic amplitude dependence of the third harmonic:

∆ ∆ε ε3 2
2= C (3)

and 3) a linear increase of the modal damping ratio (decrease of the quality factor Q):
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ε
ξ

ξξ ∆=−
3

0

0 C   . (4)

The coefficients Ci in all three relationships are proportional to the hysteresis

parameter α.  Thus, any increase of these coefficients reflects an increase of the nonlinear

hysteretic behavior of the material.  Finally, it can also be shown that hysteresis does not

affect the level of the even harmonics [18].

It is important to note that these results are essentially different from a classical

nonlinear oscillator, such as the Duffing type oscillator [19].  A classical treatment of

nonlinear oscillations, using a power law expansion of the constitutive equation, always

predicts a quadratic decrease of the resonance frequency with increasing drive voltage,

together with a cubic amplitude dependence of the third harmonic amplitude.  Furthermore,

their will be no nonlinear energy dissipation in a classical system.  The experimental data

shown in Figure 2 clearly argue that hysteresis is fundamental in the description of nonlinear

phenomena in quasi-brittle materials.

4 RESULTS

In a preliminary experiment we induced progressive damage in a beam of slate by

consecutive hammer impacts (10 sessions) concentrated in a region around the middle of the

beam (where the strain in the first bending mode is known to be largest).  After each impact,

a set of 10 resonance curves was measured at increasing drive voltage.  Figure 3 illustrates

the analyzed data for the amplitude dependent frequency shift and third harmonic generation
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in the impact experiment.  The frequency shift shows a linear dependence on the

fundamental acceleration amplitude for all cases.  The third harmonic invariably displayed a

quadratic amplitude dependence.  With increasing number of impacts, we observed

significant increase of the proportionality factors, and consequently, of the hysteretic

strength parameter α.  The relative increase before and after the impact sessions equals 10.

A similar increase was noted for the attenuation (not shown).  However, as illustrated by

Figure 4, the second harmonic did not show a significant increase.  This is no surprise:

Hysteresis has little effect on the even harmonics, which are typically the results of

anharmonicity of the elastic energy (as treated in classical nonlinear theory).

Despite the increase of the nonlinearity by a factor of 10, there was no evidence of

macrocracking from the surface.  We believe that the increase is entirely due to the local

increase of the microcrack density in the middle of the beam.

Nonlinearity is essentially linked to the stress-strain relation.  Nonlinear effects will

preferably emerge at locations where stress and strain are largest.  During the impact

experiment, all impacts were concentrated around the middle of the beam, exactly where the

strain for the first bending mode is largest.  As a test we also performed impacts on the

edges of the beam.  There was no significant increase of the nonlinearity for these

measurements.

In addition to the nonlinear measurements, analysis of the lowest amplitude

resonance curves after each impact provided two linear material parameters: resonance

frequency and linear attenuation.  The relative reduction of the linear (low amplitude)

resonance frequency before and after the impact sessions was only 5%.  The linear

attenuation (modal damping ratio) increased by 70%.  Linear damping is thus significantly

more sensitive to microcracking than the resonance frequency (or Young's modulus), but the

relative change (1000%) in the nonlinearity parameter is far superior.  It is obvious that
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measuring the nonlinear properties of a material will be more efficient in the detection of

microcracking and can therefore be used earlier on in the damage process.

The second experiment aimed at damage assessment by nonlinear resonance during

controlled quasi-static fatigue loading.  Three slate beams were subjected to mechanical

aging by means of three-point-bending (2 supports and one force-cel acting in the middle of

the beam).  The applied load was cycled between 0 and 28N, which is high enough to induce

permanent fatigue damage after several hundreds of cycles.  Each cycle took about 12

seconds.  A fourth identical beam served as reference and was cycled between 0 and 15N.

The typical response in force-displacement space to continuous cyclic loading is

shown in Figure 5.  One can distinguish three regions: 1) the elastic regime where damage

by microcracking is minimal; 2) the plastic regime, where progressive damage occurs in the

form of microcracking, with continuously increasing permanent deformation as a result; 3)

the terminal regime, where microcracks coalesce to form a macrocrack, and eventually lead

to complete failure of the material.  After each cycle during the test, the computer controlled

apparatus calculates the apparent instantaneous modulus, E, from the quasi-static force-

displacement curves.  This value is then compared to the initial value, E0, and used to define

a damage index D, such that D=1-E/E0.  In the elastic regime, there is almost no reduction

of the Young's modulus: D ≅  0.0.  In the plastic regime, the modulus is continuously

softening: 0.0 < D < 0.5.  Finally, the modulus decreases quickly and drastically in the

terminal regime: D > 0.5.

Single mode nonlinear resonance acoustic spectroscopy (SIMONRAS) was used to

measure the linear and nonlinear parameters of the beams at regular instances in the

degradation process.  The analyzed results for one of the beams are illustrated in Figure 6.

Each time 10 resonance curves were taken at increasing drive levels.  The measurements
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were taken in the elastic, the plastic and the terminal regime.  A significant increase of the

resonance frequency shift and the third harmonic levels can be observed in going from the

elastic to the plastic regime (Figures 6a,b).  The fatigue damage is completely controlled by

microcracks.  No macrocracks are visible at this stage.  In the terminal stage, a macrocrack

develops at the surface.  Note that the linear resonance frequency shift and quadratic power

law for the third harmonic is verified through all stages of the fatigue loading experiment.

Near failure, the nonlinearity coefficient deduced from the resonance frequency shift

increases by a factor 830 compared to the value in the elastic regime. A similar increase is

noted in the dependence of the third harmonic.  The second harmonic levels do not change

significantly in the plastic regime.  Only when the macrocrack appears, its proportionality to

the square of the fundamental suddenly increased by a factor of order 100 (Figure 6c).

Just like in the case of the hammer impact experiment, we followed the evolution of

the linear material parameters as function of the fatigue damage.  Figure 7a illustrates the

evolution of the linear resonance frequency of the first bending mode and the linear

attenuation, relative to their initial values, in terms of the damage parameter D for all four

beams.  Note however, that D is defined in terms of the local Young's modulus measured in

the middle of the beam.  Indeed. three-point bending specifically induces damage in the

middle of the sample.  In reality the true Young's modulus is larger.  Therefore, the damage

factor introduced above must be considered as an indicator of local damage; the global

damage factor D is smaller.  Anyway, Figure 7a clearly illustrates that measures of linear

damping are more sensitive to damage than the changes in the linear resonance frequency.

At the macrocrack stage, the attenuation increased by a factor of 3.2, while the linear

resonance frequency reduced only by 25%.

In addition to the linear parameters, we plotted the relative evolution of the nonlinear

frequency shift parameter in Figure 7b (note the change to logarithmic scale for the Y-axis
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compared to Figure 7a).  Again it is obvious that the investigation of the nonlinear material

properties is superior to assess micro- and macro-damage.  The sensitivity and detection

limit improves significantly by choosing a nonlinear technique over a linear method.  This

implies that nonlinear parameters can be used to detect damage in a much earlier stage of

degradation.

5 CONCLUSIONS

Based on the experimental SIMONRAS results, quasi-brittle materials such as slate (and

many other cementitious materials) exhibit non-classical amplitude dependent behavior.

Their nonlinearity is manifested by a linear dependence of the resonance frequency on the

measured resonance peak acceleration.  Their attenuation is also linearly increasing with

amplitude and the third harmonic shows a quadratic dependence.  These three observations

cannot be explained by classical nonlinear theory.  Nonlinear models do require the

incorporation of hysteresis in the constitutive equations.  In fact, the hysteretic nonlinearity

in these materials completely dominates the classical atomic nonlinearity.  Micromodelling

of the complex nonlinear and hysteretic compliance of cracks and flaws is essential in

simulating the macroscopic features observed in the nonlinear dynamics of quasi-brittle

materials.

The nonlinear mesocopic nature of quasi-brittle materials becomes even more

apparent when damaged.  Significant increase of the nonlinearity has been observed after

hammer impact, and during mechanical cyclic fatigue loading.  The progressive

damage/fatigue experiments discussed in this paper clearly illustrate that the sensitivity of

nonlinear methods to the detection of damage features is far greater than any linear
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acoustical method.  Therefore, acoustic diagnostic methods that focus on nonlinear

phenomena such as wave distortion by creation of harmonics, nonlinear attenuation, and

amplitude dependent resonance frequency shift, have a strong potential in damage detection.

The nonlinear resonance technique is a relatively fast and efficient technique to

assess global damage in a material.  It can be applied to any type of geometry.  Other

nonlinear methods, such as the Nonlinear Wave Modulation Spectroscopy (NWMS) [8], can

be applied as a complementary technique to investigate more localized damage.

In the near future, we expect that the methodology of nonlinear elastic wave

spectroscopy (NEWS) techniques will be developed and applied for various materials

testing procedures.  Their impact on the economy and safety can be enormous.  Nonlinear

methods may be implemented in applications as diverse as general production quality

control (fail/pass tests), monitoring fatigue damage in composites, buildings, bridges,

investigating high temperature resistance of ceramics and concrete (fire damage), examining

welding bonds in gas and oil pipe lines, inspecting aircraft and spacecraft, etc.
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FIGURE CAPTIONS

Figure 1. Experimental set-up for SIMONRAS experiments.

Figure 2. Single Mode Nonlinear Resonance Acoustic Spectroscopy of the first bending

mode of an intact (left) and a microdamaged slate beam (right). Top Row: measured

resonance curves at 10 different drive levels; Second Row: relative resonant frequency shift

(f0-f)/f0 as function of the peak acceleration amplitude measured at the different drive levels;

Third Row: harmonic content at peak acceleration; Bottom Row: relative change of the

measured attenuation (ξ-ξ0)/ξ0 as function of peak acceleration.

Figure 3. SIMONRAS results for the assessment of progressive damage in the hammer

impact experiment. Top: Logarithmic representation of the relative resonance frequency

shift as function of the resonance peak acceleration at different stages in the impact

experiment. Bottom: idem for the amplitude dependence of the third harmonic.

Figure 4. Logarithmic representation for the amplitude dependence of the second harmonic

at various stages in the hammer impact experiment.

Figure 5. Typical force-displacement evolution during cyclic fatigue loading on a slate beam

in three-point bending

Figure 6. Cyclic fatigue loading experiment. (a) Relative resonance frequency shift as

function of the measured peak acceleration amplitude at different stages in the fatigue
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process; (b) idem for the amplitude dependence of the third harmonic; (c) idem for the

second harmonic.

Figure 7. Cyclic fatigue loading experiment. (a) Variation of the linear material parameters

(resonance frequency and attenuation) with respect to their initial values as function of the

damage index D. (b) idem, with the addition of the variation of the nonlinear parameter (in

logarithmic scale).
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Figure 3: Van Den Abeele, Carmeliet, TenCate and Johnson
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Figure 4: Van Den Abeele, Carmeliet, TenCate and Johnson
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Figure 5: Van Den Abeele, Carmeliet, TenCate and Johnson
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Figure 6: Van Den Abeele, Carmeliet, TenCate and Johnson
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Figure 7: Van Den Abeele, Carmeliet, TenCate and Johnson
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